
~ Pergamon 
0021--8928(95)00001-1 

I. Appl Maths Mechs, Vol. 59, No. 1, pp. 1-7, 1995 
Copyright © 1995 Elsevier Scienoe lad 

Printed in Great Britain. All rights r~rved 
0021-8928/95 $24.00+0.00 

SOME INTEGRABLE EXTENSIONS OF JACOBI'S 
PROBLEM OF GEODESICS ON AN ELLIPSOIDt 

V. V. K O Z L O V  

Moscow 

(Received 9 N o v e m b e r  1994) 

The problem of a l~)int moving on the surface of an n-dimensional ellipsoid in a conservative field of force is considered. It is 
shown that if the pot~mtial energy terms are inversely proportional to the squares of the distances to the (n - 1)-dimensional planes 
of symmelxy of the ellipsoid, the problem can be explicitly integrated by using separation of variables in elliptic Jacobi coordinates. 
It has n independenlt commuting integrals that are quadratic functions of the momenta. If n -- 2, an additional integral can be 
found explicitly by using redundant coordinates. In the limit, when the least semi-axis approaches zero, one obtains a new integrable 
billiards problem inside the ellipse. Extensions of these results to a space of constant non-zero curvature are discussed. 

1. T H E  M A I N  R E S U L T  

Jacobi [1] introduced elliptic coordinates in multidimensional Euclidean space and used them to solve 
a variety of non-trivial problems in dynamics. Among these is the celebrated problem of motion on the 
surface of an n-dimensional ellipsoid. The trajectories of a material point moving by inertia are geodesics. 
In addition, Jacobi used separation of variables to solve a more general problem in which the point is 
moving under the action of an elastic force whose centre is the centre of the ellipsoid. 

Let R n+l be Euclidean space with Cartesian coordinates Xo, Xl . . . .  , xn. Consider an n-dimensional 
ellipsoid in R n + 1 

n 2 
v x ~ = I  (1 .1 )  
s=Z'oa2 

w h e r e a  0 < a  1 < . . .  < a  n . 

Theorem 1. The. problem of motion on the ellipsoid (1.1) under the action of conservative forces with 
potential energy 

_ k n 2 n O~ 
V - i ~ x  s +,Y_, ---~-; k,o~v=const (1.2) 

v=o i v 

is completely integrable. 
If % = . . .  = ix,, = 0, we obtain Jaeobi's classical result [1]: the potential (1.2) generates a field of 

elastic forces whose centre is at the origin. 
The potential (1.2) has a noteworthy property (d. [2]). Consider the motion of a particle in R n+l, 

unconstrained by (1.1), under a conservative force with components --OV/ibcv. This problem can be readily 
solved by separation of Cartesian coordinates. It turns out that all bounded trajectories are closed. In 
actual fact, this is not quite correct: trajectories that reach the coordinate planes, where the function 
(1.1) has singulari[ties, in a finite time must be excluded. 

Theorem 1 also holds for numbers a0, • • • ,  an of different signs. In that case Eq. (1.1) defines a 
hyperboloid in R '*+1. In addition, the complete integrability property is preserved for ellipsoids of 
revolution, when ~some of the numbers a0, • • •, an may be equal. The most interesting special case is 
that of a0 = . . .  = an = a, when the ellipsoid (1.1) is a sphere S n of radius a 1/2. Since the first term in 
(1.2) is constant on S n, it does not affect the dynamics of the particle. 

The fact that the problem of motion on a two-dimensional sphere in a field of force with potential 
of the form (1.2) is integrable was pointed out in [3]. It was also shown that for potentials 
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ot v Ix2v; v=0,1 ..... n (1.3) 

almost all the orbits in S n are closed. The functions (1.3) are analogues of the potential of an elastic 
spring in a space of constant positive curvature (one of the ends of the spring is attached at a point 
with coordinatesxs = 0 (s # v),Xv = - 1). As observed by Yu. N. Federov, the problem of a point moving 
on an n-dimensional sphere with potential energy (1.2) has n(n  + 1)/2 quadratic integrals 

_ 2 i , j = 0 , 1  . . . . .  n lij =(x ix  j xix) ) 2 +20~ix ~ I x?  +20~jX? /Xj, 
Since 2n - 1 of these are independent, orbits with almost any initial data are dosed.  

2. S E P A R A T I O N  OF V A R I A B L E S  

The ellipsoid (1.1) may be included in a family of  confoeal quadrics in R n+l 

2 
X s  

a --X s=O . 

As an algebraic equation in ~,, this expression has exactly n + 1 real roots 

Lo < ~'1 <...< ~'. (2.1) 

where as-1 < ks < as (s I-- 1), ~0 < al. The numbers (2.1) are elliptic coordinates in R n+x, related to 
Cartesian coordinates by the following formulae 

/I 

= (2.2) 

Fix the value of the variable ~0, say ~0 = 0. We then obtain the ellipsoid (1.1). The other c~ordinates 
Zq, . . . ,  7~ will be Lagrange coordinates for the motion of a particle of unit mass on the surface (1.1). 
Let gl . . . . .  ~ be the conjugate momenta. The kinetic energy is [1] 

T = 2 Z Its Ms =-~,s  I'I 
.~-' MA~, ) '  ,,,s , , ~ , , )  

A(Z) = (z - ao )(z - a I ) . . .(z - a n ) 
(2.3) 

To simplify the notation, let us omit the first term in (1.2). It is easily taken into consideration by 
using Jacobi's formulae for separation of variables [1]. Using (2.2), we express the potential energy (1.2) 
in terms of  the elliptic coordinates 

n 

v=z  
s---I ( a , - ~ , l ) . . . ( a s - ~ , , )  (2.4) 

where 150, • • •, I~,, are new constants. We will use the identity 

(as - k l ) . . . ( a s  -~ , , , )  j=~ a s - k j  ~J = (~'J --Lv) 

easily established by using the Residue theorem. Using (2.4) and (2.5), we finally obtain 

(2.5) 

Thus, by (2.3) and (2.6) 

(2.6) 

S=' L -/'l'g' " ~ S  + j-~---O 12.i- ~'S ~/' ~- ~-I[ FO "f"/l~'~'s +'"'+ Fn-l~'s ]~S (2.7) 



Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid 3 

where F,,-1 = T + V is the total energy. According to Jacobi [1], the expression on the right is 
exactly Fn-1. Applying the general principle of separation of variables, let us equate the bracketed 
expressions in (2.7) for s = 1 . . . .  , n. Since kk # 7q for k # l, it follows that the resulting linear system 
of equations will enable us to find F0, F1 . . . . .  F,,_I as quadratic functions of the momenta. Moreover, 
naturally, Fn_ 1 is the total energy. The other functions F0 . . . .  , F,,_2 are commuting integrals of the 
problem. 

r~ 

Thus, the problem of motion on a n-dimensional ellipsoid with potential (1.2) ha~ n independent 
integrals in involution, F0 . . . .  , F,,_I. By Liouville's theorem (see, for example, [2]), it is completely 
integrable. This proves the theorem. 

Using the above linear system, one can write down differential equations for the elliptic coordinates 

~:s = OH / 01.t s = +4¥s  3 /~(~ ,~)  / (2X s ) 

• (z) = A(z)[-Fo-...-Fn_~z ~q +Ef~ s / (a j  -z)] 
(2.8) 

Using the formula forA, we conclude that O(z) is a polynomial in z, of degree 2n. System (2.8) has the 
form of the Abel-Kowalewski equations. 

The complete integral of the Hamilton-Jacobi equation for our problem has the form 

1,  I~(Z,,)_,~ 
W=-Fn_l t+~J.d  . a~s 

2 ~ A s 

The part of n arbitrary parameters cl , .  • •, Cn is played by the n independent integrals Fo . . . . .  Fn-1. 
The general solution of Eqs (2.8) is derived from the Jacobi relations 

OW/Oci=b i, b=const; i= l  ..... n 

3. THE CASE OF TWO D E G R E E S  OF F R E E D O M  

When n = 2 there is an additional quadratic integral that can be determined explicitly. Let x,y, z be 
Cartesian coordinates in R 3 and 

x 2 / a + y  2 / b + z  2 / c = l  (3.1) 

the equations of the ellipsoid. As shown by Joachimsthal (see, for example, [4]), the function 

i ( x  2 y2 Z2~¢x.2 y.2 Z.2 
(3.2) 

is an integral of raotion by inertia. 
Consider the motion of a particle of unit mass acted upon by a force with potential energy of the 

form (1.2) 

v = k ( x 2 + y 2 + z 2 ) +  a + ~.:p_f2+ T (3.3) 
2x" 2y 2z 2 

We shall seek an integral of the equations of motion 

x " = k x l a - V x ,  y ' = ~ y l b - V y ,  z ' = k z l c - V  z (3.4) 

as a sum F = I + f, wheref is  an as yet ffnknown function of x, y, z. 
Equations (3.1) and (3.4) yield the Lagrange multiplier 7t as a function of the state of the particle 

2 2 2 X" y" Z" +Y¼+ + .+ 
[a  "~ b" c ' J  a a b c 

Since the function (3.2) is an integral of the equations of motion by inertia, it follows that all the 
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terms in/r  that are cubic in the velocities x',y', z" vanish together. The equation F = 0 takes the following 
explicit form 

( x  2 y2 +z2")(x.  V I+ =0 (3.5) -2|----~ + ---~ x+Y'v',+Z'Vz fxx'+fy y'+fzz" 
t,a" b b : c ) 

If we equate the coefficients ofx',y', z" to zero, we obtain a system of three partial differential equations 

+ -- Vz I----~ - 21-'~- +'~" + "~'I~ = -fx .... 
2(X_vx+Yvv z .  "~ x _(x 2 y2 z2")Vx (3.6) 
[a b " c J a  '~ [ a  b c J a 

This system is readily solved for the singular part of the potential (3.3) 

f ( x 2 y2 Z 2 ~( a ~ y 
= ~ T  + ~_ + ~ _ ~ _ _ ~  + b_~ + c-~- J (3.7) 

However, if we substitute the function V = k(x 2 + y2 + z2)/2 into (3.6), we obtain an incompatible 
system of equations. In fact, however, there is no contradiction. The point is that, for an elastic potential, 
the second term in (3.5) vanishes owing to the identity 

xx" / a+ yy" l b+ zz" l c=O 

Hence we must omit the second terms in (3.6). Then, using (3.1), we find the solution 

f =  _k(x  2 / a  2 +y2 /b  2 +z 2 /c  2) (3.8) 

Summing (3.2), (3.7) and (3.8), we obtain the final result 

/ 2 2 2 ~l: .2 .2 .2 . "~ 

F=(Xa2+b2+Zc21~X2+b2+Zc 2 k+ a~2 + ~2 + c~2 ) 

4. INTEGRABLE BILLIARDS 

Assuming that c < b ~< a, let the minor semi-axis c in Eqs (3.1) tend to zero. It is natural to expect 
the limiting problem to be that of a point moving inside the ellipse 

x 2 / a + y  2 / b = l  (4.1) 

which rebounds elastically from its curve. 
This passage to the limit was first studied, assuming no external forces, by Birkhoff [5] (see also [6]). 

The characteristic property of Birkhoff's billiards is as follows: the straight-line segments of all trajectories 
(or of their continuations) touch the same conic, that is confocal with the ellipse (4.1). 

As shown in [7], addition of an attractive or repulsive elastic force with its centre at the origin will 
also produce an integrable billiard problem. This problem was analysed qualitatively (including the 
construction of bifurcation diagrams) in [8]. 

It has been shown [9] that application of a Bolin transformation to this problem produces a similar 
problem with a particle moving under a gravitational force directed toward the focus of the ellipse (4.1). 
In particular, gravitational elliptic billiards is also an integrable dynamical system. 

Let us now let the semi-minor axis of the ellipsoid (3.1) approach zero in the more general problem 
of a particle moving in a field with potential (3.7). Clearly, as c --~ 0 the z coordinate also tends to zero. 
In order to avoid the singularity at z = 0, we set Y = 0 in (3.7). 

It can be shown that the limit 
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2 2 ( x 2 ),2 
~i..~cFIxy= x" 4 y -  ( " y - x y ' ) 2  + I~, ] ( - k + ~ +  [~.] (4.2) 

' a b ab a 2 b 2)~ ax" b y ' )  

exists. The expression on the fight of this quality is an integral of the billiard problem inside the ellipse 
(4.1), that is quadratic in the velocities. Consequently, the limiting problem is integrable. The trajectories 
of a particle inside the ellipse are made up of arcs of  conic sections. This result can be generalized. 

Theorem 2. Elastic billiards inside the ellipse (4.1) with potential 

k. 2. 2.. a ~ Y~ Y2 V=--tx  + y  )~- - - - - -~+-- - -~+--+--  (4.3) 
2 2x" 2y" r I r 2 

were k, ~ [3, 71, Y2 are constants, and rl and r2 are the distances from the foci of the ellipse to the particle, 
is an integrable dynamical system. 

The proof employs the method of Section 3. Billiards in an ellipse with elastic rebounds is a system 
with two degrees of freedom. It admits of an energy integral (x'2 + y.2)/2 + V. For an additional integral 
we let (cf. (4.2)) 

F = x "2 1 a + y.2 1 b -  (x 'y -  xy')2 1 (ab)+ f (x ,y)  

The component  of  this function that is quadratic in the velocities is an integral of  Birldioff billiards. 
Consequently, it remains unchanged at the instant of  elastic collision (the velocity remains unchanged 
and the angle of  incidence equals the angle of  reflection). Therefore f should be sought subject to the 
condition that F is constant on the phase trajectories of the "free" system 

x"=-vx, y- =-vy 

Equating the coefficients of x" andy" in the equation F" = 0 to zero, we obtain a system of two partial 
differential equations 

2Vx--~bb (YVx-xVv)= f x, ~ -+~-~(yVx-xVr)= f r a 

In view of the equality fro = f~, we obtain the desired second-order partial differential equation for 
the potential 

(a - b) V.~, + 3(yV x - xV r) + (y2 _ x ~ )V~ + xy(Vx~ - V~. ) = 0 (4.4) 

Corresponding to each solution of  this equation we have an integrable billiards problem in the ellipse 
(4.1). Clearly, a - b is the square of the distance from the focus to the centre of  the ellipse. To complete 
the proof, it remains to verify that each term in (4.3) satisfies Eq. (4.4). 

5. S O M E  E X T E N S I O N S  

Let R n+2 be Euclidean space with Cartesian c o o r d i n a t e s x l , . . . ,  Xn+2, and let 

x: E x =l (5.1) 
v=l 

be an (n+ 1)-dimensional sphere, whose metric has constant positive curvature. We also consider in 
R '*+2 an (n + 1)-dimensional cone with apex the origin, defined by the equation 

n+2 2 
X xv =0 (5.2) 
v=l a v - z 

where al < a2 < • • • < an+2, z ~ av and al < z < an+2. The cone (5.2) cuts the sphere (5.1) in an n- 
dimensional surface E" which is a natural analogue of an ellipsoid in a space of  positive curvature. 
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As in the case of a flat space, the problem of geodesics on E" is a completely integrable Hamiltonian 
system. This was essentially known to Jacobi [1]. Geometrical and analytical aspects of the problem 
of geodesics on E ~ were discussed in [10]. This extension of Jacobi's problem is solved by separation 
of variables, using spheroconical coordinates. The latter are defined as the roots Zl, • . • ,  zn+l of 
Eq. (5.2), which separates the numbers al, • • •, an+2. The variables Zk are Lagrange coordinates on 
the Sphere S n+l. To express the Cartesian coordinates x in terms of z, one uses the equation of the 
sphere (5.1). 

As already pointed out, the problem of inertial motion on the surface of an ellipsoid in a flat space 
remain s completely integrable if one adds an elastic force whose line of action always passes through 
the centre of symmetry of the ellipsoid [1]. The following theorem is a natural analogue of this result 
of Jacobi. 

Theorem 3. The problem of motion on the ellipsoid E n C S n+l under forces with potential 

n+2 (5.3) 

is completely integrable. 
To determine the geometrical meaning of the potential (5.3), let us consider the motion of a point 

on Sn+l,,+l under. . a conservative force whose potential depends on the distance to some centre (a point 
on S ); thin Is an analogue of central motion in plane Euclidean space. As the distance one can take 
the angular coordinate 0 on a great circle, measured from the centre. The following generalized Bertrand 
problem was solved in [11]: determine all potentials for which almost all orbits are closed. It turns out 
that this problem (just as in a space of zero curvature) has just two solutions 

V=cxctgO, V=~tg20;  ¢x,l~=const (5.4) 

The first of these is an analogue of the Newton potential: it satisfies the Laplace-Beltrami equation 
on S 3 [3]. The second solution is an analogue of the potential of an elastic spring. 

It can be shown that if the centres of elastic attraction or repulsion are placed at the points of S n+l 
with coordinates 

(-+ 1 ,o  . . . . .  o ) , . . .  , (o  . . . .  ,o,_+1) 

then, apart from an unimportant additive constant, the potential of the field of force will be of the form 
(5.3). One of these points is the centre of the ellipsoid E ~. 

The proof of Theorem 3 uses spheroconical coordinates. The separation of variables follows the 
scheme described in Section 2. 

Theorem 3 yields certain new integrable billiards problems. Consider the motion of a particle on the 
n+l  • • sphere S reside (our outside) the ellipsoid E" under forces with potential (5.3), on the assumption 

that collisions at the boundary of E ~ are absolutely elastic. It can be shown that this dynamical system 
with n + 1 degrees of freedom is completely integrable: it has n + 1 independent commuting integrals 
which are quadratic functions of the velocities. 

If n = 1, one can speak of the foci of the ellipse E 1. Placing at these loci gravitational centres whose 
potentials are defined by the first formula of (5.4), we again obtain integrable billiards inside (outside) 
E 1 on a two-dimensional sphere. The integrability of elastic billiards inside E 1 c S 2, without external 
forces, was established in [12]. Many-dimensional extensions were considered in [10]. 

In conclusion, we note that similar results are true in spaces of constant negative curvature. 
The research reported here was supported financially by the Russian Fund for Fundamental Research 

(93-013-16244). 
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